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Abstract—Deep salient object detection (DSOD), which lever-
ages the popular deep learning techniques, is a promising
new branch of salient object detection (SOD). By training on
large-scale public datasets, DSOD methods showed significant
performance improvement while avoiding the involvement of
manually designed visual features and prior knowledge of specific
datasets. This paper proposes a novel superpixel-based DSOD
method based on fuzzy superpixel extraction (FSE), a neural
network-based differentiable superpixel extraction method, and
controlled filter convolution (CFC), a modified convolution op-
eration that accepts two input feature maps and can balance
their influences without hand-picked coefficients. Different from
other superpixel-based methods, by using FSE, the proposed
method is able to include superpixel extraction in the training
process, which optimizes the superpixel representations according
to the datasets. Then, the CFC layers combine two different
parts of the information possessed by the superpixels, which are
intrasuperpixel features and intersuperpixel features, to generate
a unified feature map. In the experiments conducted on 5 widely
used public datasets, the proposed method significantly outper-
formed state-of-the-art models, which proved its effectiveness and
generalization ability.

I. INTRODUCTION

How to model the pattern of human attention when seeing
a picture has been a long-standing and challenging topic of
computer vision (CV). Since salient objects are supposed to be
more important or interesting in images, correctly recognizing
these objects, which is usually called salient object detec-
tion (SOD), can provide useful information to several more
complicated visual tasks, such as object recognition, semantic
segmentation and other visual pattern recognition tasks. By
using SOD as a preprocessing step, algorithms for these tasks
can potentially improve in both accuracy and efficiency.

Based on empirical assumptions or prior knowledge of
the neural processes of human brains, researchers have de-
veloped a series of models [1], [2], [3], [4], [5], [6], [7]
to predict human eye fixation on each pixel. These models
work in an unsupervised or semisupervised manner, thus
highly depending on their basic assumptions, which are mostly
derived from intuitive conclusions or empirical knowledge.
Therefore, the above methods are usually very unstable among
different datasets, and their performances are relatively low
when compared to recent methods.

There are also some researchers [8], [9] that have ap-
proached the problem of SOD with supervised learning tech-

niques. These methods introduced the idea of basing models
on actual data rather than assumptions, and they achieved
impressive results compared to other methods proposed at the
same time. Meanwhile, these methods are mostly based on
superpixel extraction or other oversegmentation methods, and
their success proved the potential of superpixel-based SOD.

Superpixel extraction is a branch of image segmentation that
strictly localizes the influence of each pixel to reduce time
consumption. Different from global segmentation methods
such as local variation segmentation [10], superpixel extraction
methods tend to overly segment images into many very small
regions (i.e., superpixels). While ignoring some pixel-level
texture information, superpixels usually maintain most region
boundaries, which are especially important for segmentation
tasks, including saliency detection. Meanwhile, because there
are considerably fewer superpixels than pixels, working on
the superpixel-level can greatly reduce the time consumption
of an algorithm. Therefore, superpixel extraction can become
an effective component of SOD methods.

In the last few years, deep learning has drawn considerable
attention in the field of machine learning. Because neural
networks are capable of describing data distributions by using
a large number of sophisticated parameters, they have proven
to be extremely effective in many CV tasks. Naturally, deep
learning techniques have also been introduced in studies of
SOD, thus creating a new branch called deep salient object
detection (DSOD). Most DSOD studies [11], [12], [13], [14],
[15], [16] have been based on common deep learning tech-
niques widely used in other CV studies, but they still achieved
significantly better performances than traditional methods,
which proved that DSOD is very promising in SOD research.

Different from pixel-level DSOD methods, some researchers
have employed superpixel extraction techniques as a part of
their studies. SuperCNN [17] leverages superpixelwise con-
volution and hierarchical contrast features to obtain saliency
maps of multiple scales. Then, the multiscale saliency maps
are fused with learned weights to yield the final pixel-level
saliency map. Tianshui Chen et al. [18] proposed an end-to-
end framework called deep image saliency computing (DISC).
DISC formulates the DSOD problem as a progressive rep-
resentation learning problem. It uses superpixels for coarse-
level saliency evaluation and then combines coarse-level and



fine-level saliency maps with superpixel-based local context
information (SLCI). The success of SuperCNN and DISC
proved that superpixel extraction can also be an effective
component of DSOD methods.

However, traditional superpixel extraction methods such as
SLIC [19] are mostly nondifferentiable; thus, they cannot be
part of the training processes, e.g., SuperCNN and DISC only
use superpixel segmentation as input and discard derivatives
of superpixels in the backpropagation process.

We consider this a problem because while the whole
network is being optimized according to a specific dataset,
superpixel extraction cannot gain from the training process
and could potentially become a bottleneck in the performance.
Therefore, we propose a novel differentiable superpixel ex-
traction method implemented by neural network modules, i.e.,
fuzzy superpixel extraction (FSE). Fuzzy superpixel extraction
networks (FSENs) are basically CNNs with the dimensions of
their outputs being fixed to O × N × M , where O is the
upper bound of the number of potential owner superpixels
with respect to each pixel, and N and M are the height and
width of the input image, respectively. Their outputs represent
values of the membership function of each superpixel at each
pixel. Sec.III explains FSEN and the constant O. FSENs are
CNNs, which means they can be embedded into any network.

The other problem in superpixel-based methods is how to
balance intrasuperpixel information and intersuperpixel infor-
mation, more specifically, information of pixels within a su-
perpixel and information of the boundary around a superpixel.
Unlike pixels that share a fixed shape in an image, each
superpixel has a unique shape that could contain information
useful to segmentation tasks; thus, treating superpixels as mere
collections of pixels, such as averaging color and features
among pixels, may lose important information.

As stated before, SuperCNN [17] directly conducts con-
volutions on superpixels, which almost completely ignores
intersuperpixel information. DISC [18] uses SLCI to combine
the two types of information, but SLCI is basically hand
designed and heavily dependent on assumptions. Therefore,
we propose using a neural network-based approach, called
controlled filter convolution (CFC), with its own learnable
parameters to reduce the influence of priors and assumptions.

CFC is inspired by dynamic filter convolution (DFC) [20]
and edge-conditioned convolution (ECC) [21]. DFC and ECC
are based on the idea of dynamically changing the convolution
kernels according to the current input. The idea is based
to a great extent on convolution-based neural networks, but
since DFC and ECC are both designed to process graph data,
which are highly unstructured and unordered, they are too
complicated for image processing. Therefore, we propose CFC
as a task-specific simplified method. Different from traditional
convolution layers, each CFC layer simultaneously accepts two
input feature maps with different channels, and the output is
not simply a weighted sum of the two inputs but generated
in a slightly complicated fashion. Specifically, when using
one of the input feature maps as the input of a traditional
convolution layer, the filters are functions of the other input

feature map, i.e., the filters are CONTROLLED by one of
the input feature maps. In our experiments, superpixelwise
features and superpixel shape description features are the
two inputs to CFC, so that intrasuperpixel information and
intersuperpixel information can participate in the following
process in a balanced manner.

Fig. 1. The salient object detection network using fuzzy superpixel extraction
and controlled filter convolution. The black box marks the feature extraction
network, the red boxes mark the superpixel handling modules, and the blue
boxes mark the components of the saliency evaluation network.

Fig. 1 illustrates our working network. This network is
a complete end-to-end solution for the pixelwise saliency
detection task, which is different from DISC in that it needs to
use two different networks simultaneously. Apparently, while
both take advantage of superpixels, a single network is much
easier to train.

The main contributions of this paper lie in three parts:
• Fuzzy superpixel extraction (FSE), a neural network-

based differentiable superpixel extraction method that
can participate in the training process and be optimized
according to the datasets;

• Controlled filter convolution (CFC), a convolution-based
network layer model that simultaneously accepts two
different input feature maps and is capable of balancing
their influences without hand-picked coefficients; and

• a novel DSOD network consisting of FSE and CFC.
The remainder of this paper is structured as follows. Sec.

II will introduce the task of deep salient object detection and
the proposed network to clarify some important concepts and
give the readers an overall understanding of our method. Then,
fuzzy superpixel extraction and controlled filter convolution
are presented in detail in Sec. III and Sec. IV, respectively. To
evaluate the performance, a series of experiments have been
conducted, and their results will be presented and discussed
in Sec. V. Finally, Sec. VI concludes our work.

II. DEEP SALIENT OBJECT DETECTION FRAMEWORK

Experimentally, the task of SOD is to assign a saliency score
to each pixel in an input image and to make the score as close
to a groundtruth reference value as possible, i.e., to find a
function f : RC×|X| → R|X|, which minimizes ∥f(I)−Gt∥,
where C is the number of color channels, X is the set of



coordinates within the image, I is the input image, and Gt is
the groundtruth saliency map.

Different from hand-designed algorithms, deep salient ob-
ject detection (DSOD) methods use deep learning techniques
to model function f . In contrast to traditional algorithms
that are basically based on assumptions, DSOD methods are
capable of constructing f according to the target dataset.
Therefore, by training the networks on large datasets, DSOD
methods significantly outperform the traditional methods. In
this paper, the proposed network is a single end-to-end network
illustrated in Fig. 1, which consists of three major parts: a) a
feature extraction network (FEN) that provides the following
processes with a pixelwise feature map; b) superpixel handling
modules, including a fuzzy superpixel extraction network
(FSEN), a superpixel pooling layer (SPL), a superpixel
recovering layer (SRL) and a shape description network
(SDN); and c) the saliency evaluation network (SEN), which
determines the saliency score of each superpixel. If the whole
network is seen as a single function f , each module of the
network can also be considered as a function:

FEN : RC×|X| → RDF×|X| (1)
FSEN : RDF×|X| → RO×|X| (2)
SDN : RO×|X| → RDS×K (3)
SPL : RDF×|X| × RO×|X| → RDF×K (4)
SEN : RDF×K × RDS×K → RK (5)
SRL : RK × RO×|X| → R|X|, (6)

where DF is the dimension of pixelwise features given by the
FEN, DS is the dimension of the shape description features
given by the SDN, and K is the number of superpixels.

Thus, the workflow can be described as follows:
1) Fp = FEN(I), where Fp is the pixelwise feature map;
2) S = FSEN(Fp), where S is the superpixel representa-

tion of the original image;
3) Fssd = SDN(S), where Fssd is the superpixel shape

description feature map;
4) Fs = SPL(Fp, S), where Fs is the superpixelwise

feature map;
5) Ys = SEN(Fs, Fssd), where Ys is the superpixelwise

saliency map; and
6) Y = SRL(Ys, S), where Y is the final saliency map.
First, FEN generates a pixelwise feature map Fp according

to the input image I . Then, FSEN, SDN and SPL reduce the
feature map from pixel-level Fp to superpixel-level Fs and
provide superpixel-specific feature Fssd. Then, SEN can gen-
erate a saliency map Ys according to Fs and Fssd. However,
since SEN works at the superpixel level, Ys is superpixelwise,
which is not the intended output of DSOD. Therefore, an SRL
is needed in the final stage to recover the pixelwise information
with the help of superpixel representation S.

During training, there should be a loss function attached
to the end of the network to compare output Y with ground
truth Gt. In our experiments, the loss function was chosen as

a smoothed mean absolute error used in fast R-CNN [22]. For
convenience, the output of the loss function, i.e., the error or
loss, is noted as E in the remainder of the paper.

As stated above, the feature map given by FEN is shared
by the FSEN and the SEN, thus forming the foundation of all
the following processes. This feature map heavily affects the
performance of the entire network, especially the capability
of generalization. Therefore, due to the limited sizes of the
SOD datasets, in the experiments discussed in Sec. V, we did
not train FEN along with the other components but chose to
use the first two convolution layers of a VGG16 network [23]
pretrained on ImageNet1.

The superpixel representation is generated by the FSEN
according to the pixelwise feature map given by the FEN,
and serves as input to the SDN, SPL and SRL to help in
generating the superpixel shape description features, average
pooling pixelwise features within the superpixel boundaries
and recovering the pixelwise saliency values from the su-
perpixelwise saliency map. It involves most of the major
components within the network, which makes it an extremely
important part of our method. Therefore, the extraction and
use of fuzzy superpixels are explained in detail in Sec. III.

Because the input of the SEN consists of a superpixelwise
feature map and a superpixel shape description feature map,
and these two feature maps cannot be compared numerically, it
could prove difficult to balance their influence by handpicked
coefficients. To solve this problem, we propose the use of
CFC instead of conventional convolution layers in this part
of the network. CFC guarantees the equality between the two
inputs with no handpicked coefficients involved, and they have
proven effective in our experiments in Sec. V-D. To obtain a
better understanding of CFC, please refer to Sec. IV.

III. FUZZY SUPERPIXEL EXTRACTION

Fuzzy superpixel extraction (FSE) is inspired by SLIC [19].
As the name suggests, FSE considers superpixels as FUZZY
sets of pixels instead of sets in traditional methods and thus
converts the superpixel extraction into the problem of assign-
ing values to the membership functions of the superpixels.
By implementing FSE with neural network modules, FSE is
differentiable and can be easily embedded into any network.

Assuming there are a fixed number of superpixels, and each
of them has a limited pixel pool (the set of candidate pixels),
FSE can be seen as a function FSE : RC×|X| → [0, 1]

K×|X|,
for ∀I and S = FSE(I) s.t.{ ∑K

k=1 Sk,x0 = 1 ∀x0 ∈ X
Sk0,x = 0 ∀x /∈ Xk0 ,

(7)

where K is the number of superpixels, and Xk ⊂ X is
the pixel pool of the kth superpixel. Sk,x is the value of
the membership function of superpixel k at pixel x, i.e.,
Sk,x = µk(x).

The idea of fixing both the number of superpixels and the
pixel pools is borrowed from SLIC. However, SLIC is based

1The pretrained model was from the PyTorch project, https://pytorch.org.



on the k-means algorithm and thus is nondifferentiable, which
makes it impossible for SLIC to participate in the training
process. Therefore, we propose extending the idea of SLIC
into a more general and differentiable form.

(a) Overlapping (b) Cell Numbers (c) Competition

Fig. 2. Illustration of pixel pools and the competition between superpixels.

In our experiments, pixel pools are defined as the simplest
shape and are rectangles, each composed of 3× 3 grid cells,
and the stride between pools is 1 cell for both the horizontal
and vertical directions, as shown in Fig. 2(a) and (b). Pixel
pools of nearby superpixels overlap in cells as shown in Fig.
2(a), and in the overlapping cells, superpixels will compete for
the ownership of pixels as in Fig. 2(c). However, in the pro-
posed method, the process of competition is unnecessary, and
it is only used for visualizing the superpixel representations.

A. Fuzzy Superpixel Extraction Network

Since the pixel pool of each superpixel is defined as shown
in Fig. 2, the number of potential owner superpixels of each
pixel should be limited, i.e., assuming Ωx is the set of possible
owners of pixel x, there is a constant O >= |Ωx| for ∀x. In
addition, O = 9 in our experiments because pixel pools have
a stride of 1 cell, and each consists of 3× 3 grid cells.

As stated in Sec. I, the fuzzy superpixel extraction network
(FSEN) in the proposed method is implemented as a convolu-
tional neural network (CNN) with the dimensions of its output
S being fixed to O×|X|. Each element of S is associated with
a tuple (k, x), where x ∈ X and k ∈ Ωx, and Sk,x = µk(x).
To fit the elements of S into matrices, cells around each pixel
are numbered relative to the position of that pixel as P in Fig.
2 (b), and the superpixel centered at each of the cells will
share its number. Thus, the order of superpixels in ΩP can be
defined, so that the values of their membership functions fit
into the output vector of P .

Finally, to fulfill the first requirement in Eq. (7), the last
layer of FSEN is a spatial Softmax layer.

B. Superpixel Pooling and Recovering Layers

Two other important components related to FSEN are the
superpixel pooling layer (SPL) and the superpixel recovery
layer (SRL). Simply speaking, they switch working levels be-
tween the pixel level and the superpixel level. Specifically, SPL
pools pixelwise features within each superpixel to generate
a superpixelwise feature map, and SRL recovers pixelwise
information according to the superpixel representation and the
given superpixelwise information.

Sec. II defined SPL : RDF×|X| ×RO×|X| → RDF×K and
SRL : RK×RO×|X| → R|X|; thus, the forward and backward
processes of SPL and SRL can be formulated as below:

SPLi,k(Fp, S) =

∑
x∈Xk

Sk,x · F (i,x)
p∑

x∈Xk
Sk,x

(8)

g
(SPL)

F
(i,x)
p

(Fp, S, gFs) =
∑
k∈Ωx

g
F

(i,k)
s

· Sk,x∑
y∈Xk

Sk,y
(9)

g
(SPL)
Sk,x

(Fp, S, gFs) =

DF∑
i=1

g
F

(i,k)
s

·

(
F

(i,x)
p∑

y∈Xk
Sk,y

−
∑

y∈Xk
Sk,y · F (i,y)

p(∑
y∈Xk

Sk,y

)2
 (10)

SRLx(Ys, S) =
∑
k∈Ωx

Sk,x · Y (k)
s (11)

g
(SRL)

Y
(k)
s

(Ys, S, gY ) =
∑
x∈Xk

gYx · Sk,x (12)

g
(SRL)
Sk,x

(Ys, S, gY ) = gYx · Y (k)
s , (13)

where gν = ∂E/∂ν is the partial derivative of error E with
respect to variable ν, and g

(M)
ν is a term of ∂E/∂ν given by

module M , i.e., ∂E/∂ν =
∑

M g
(M)
ν .

IV. CONTROLLED FILTER CONVOLUTION

In neural networks, the input of a layer sometimes con-
sists of several feature maps generated by different modules.
Theoretically, deep learning techniques should be capable of
balancing the weights of different parts of the input. However,
when channels of the feature maps differ greatly, learning
processes could prove difficult to converge in practice.

Therefore, we propose using controlled filter convolution
(CFC) instead of traditional convolution layers to process
inputs consisting of 2 feature maps. CFC is inspired by
dynamic filter convolution (DFC) [20] and edge-conditioned
convolution (ECC) [21], which are designed to handle graph
data, and it can be seen as a task-specific version of DFC. Sec.
IV-A presents a detailed explanation.

As shown in Fig. 3, CFC is mainly used in the saliency
evaluation network to process superpixelwise features, and
superpixel shape description features simultaneously. Specif-
ically, CFC balances two different parts of the information
possessed by superpixels to provide a unified feature map for
the following process.

A. Formulation of CFC

CFC is a modification of the traditional convolution; thus,
its formulation will be presented with a comparison to that of
convolution layers in this section. To simplify the formulas, 3
important symbols need to be defined:

• Rx: assuming R is the set of all receptive fields, Rx ⊂
R is the set of receptive fields containing pixel x, i.e.,
Rx = {r ∈ R : x ∈ r};



Fig. 3. The working process of saliency evaluation networks with controlled filter convolution. Components marked by red boxes are nonparameterized layers,
those marked by black boxes are conventional convolutional neural networks, and the blue boxes mark controlled filter convolution layers.

• θr(x): when pixel x belongs to receptive field r, i.e.,
x ∈ r, θr(x) gives the position of x within r; and

• ηr(i): it is the pixel x ∈ r that satisfies θr(x) = i.
Mathematically, convolution operations on any kind of data

can all be described as a weighted sum of the elements in
a selected receptive field, i.e., or =

∑
x∈r e⃗

T
xw⃗θr(x) + βθr(x),

where or is the output for receptive field r, e⃗x is the feature
vector associated with pixel x, w⃗i is the ith weight vector,
and βi is the ith optional bias parameter. Since the shape of
receptive field r would not affect this formulation, without
losing generalization, the equations in this section will only
be presented in the 1D version for simplification.

As stated above, CFC simultaneously accepts two different
feature maps, A and B. For convenience, their associated
feature vectors are a⃗x and b⃗x, respectively, i.e., a⃗x and b⃗x
are similar to e⃗x in traditional convolution operations. Thus,
the forward process can be formulated as below:

or =
∑
x∈r

(
a⃗TxHθr(x)⃗bx + a⃗Txγ⃗θr(x) + α⃗Tθr(x)b⃗x + βθr(x)

)
(14)

where {(Hi, γ⃗i, α⃗i, βi)}|r|i=1 is a set of parameters, which is
represented as Γ in the remainder of this section. Obviously,
only one filter is considered in Eq. (14), but it can be easily
applied to multifilter scenarios by maintaining a different
parameter set Γ for each individual filter.

Eq. (14) can also be described as an example of the DFC
framework [20]. DFC defines filters as functions of the input
feature vectors, i.e., w⃗(r)

i = w⃗(e⃗ηr(i)) and β
(r)
i = b(e⃗ηr(i)),

and thus, the convolution becomes or =
∑

x∈r e⃗
T
xw⃗(x)+b(x).

We simplified the model by defining w⃗(x) and b(x) as
linear functions and specific to each position. Specifically,
considering a⃗x as e⃗x, we obtain

w⃗θr(x)(⃗bx) = Hθr(x)⃗bx + γ⃗θr(x) (15)

bθr(x)(⃗bx) = α⃗Tθr(x)b⃗x + βθr(x), (16)

and similarly, b⃗x as e⃗x, i.e., when considering one of the input
feature maps as input, the filters of CFC are CONTROLLED
by the other feature map. Meanwhile, in the above equations,
a⃗x and b⃗x are mutually commutable, which also proves that
CFC is capable of balancing the influence of A and B.

B. Optimization of CFC

To obtain the gradients of CFC, first let us consider the
partial derivatives of each single output element:

∂or
∂a⃗x

= Hθr(x)⃗bx + γ⃗θr(x) (17)

∂or

∂b⃗x
= HT

θr(x)
a⃗x + α⃗θr(x). (18)

Then, the input gradient of each input element can be
presented as the sum of the partial derivatives among all
receptive fields containing this input element:

g
(CFC)
e⃗ (A,B,Γ, go) =

∑
r∈Rx

gor ·
∂or
∂e⃗

, e⃗ ∈
{
a⃗x, b⃗x

}
(19)

Parameter set Γ of CFC consists of 4 parts and is slightly
different than that of conventional convolution; thus, the gradi-
ents of different parameters are discussed separately. However,
due to the simple nature of Eq. (14), the formulas of the
gradients can be easily derived with matrix operations:

gβi(A,B,Γ, go) =
∑
r∈R

gor (20)

gγ⃗i
(A,B,Γ, go) =

∑
r∈R

gor · a⃗ηr(i) (21)

gα⃗i
(A,B,Γ, go) =

∑
r∈R

gor · b⃗ηr(i) (22)

gHi(A,B,Γ, go) =
∑
r∈R

gor · a⃗ηr(i)⃗b
T
ηr(i)

. (23)

V. EVALUATION

To evaluate the salient object detection performance of the
proposed method, which will be noted as fuzzy superpixel and
controlled filter convolution (FSCFC), a series of experiments
are conducted on 5 datasets. These datasets are all publicly
released datasets with pixel-level manual annotations for the
salient object detection task, and they are widely used in
DSOD studies, which makes them appropriate benchmarks for
performance evaluation. They are as follows:

• MSRA10K [16] contains 10,000 pictures selected from
the MSRA dataset. Most of the pictures only have one
salient object located near the center; therefore, the
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Fig. 4. Comparison of experimental results of the competing methods on 5 public datasets. (a)-(e) show the PR curves of all competing methods on each of
the 5 datasets, and (f) contains the MAE results on all the datasets to show a numerical comparison between the competing methods.

dataset is relatively clean and, thus, easy to process.
However, because the numbers of both pictures and
object categories are relatively large, it can serve as a
good training set;

• ECSSD [24] has 1,000 annotated pictures with mostly
centered objects and a complex background;

• SOD [25] contains 300 images from the Berkeley Seg-
mentation Dataset (BSD) [26], which have a large variety
of salient objects;

• PASCAL1500 [27] contains 1,500 images selected from
the PASCAL VOC 2012 segmentation task. These images
usually have both a complicated background and multiple
objects, which makes PASCAL1500 a rather challenging
dataset; and

• THUR15K [28] is a large dataset with 15,000 pictures
from 5 object categories, but only 6,233 of the pictures
have corresponding annotations. This is also a relatively
clean dataset since most of the pictures contain a single
centered object.

Since ECSSD, SOD and PASCAL1500 are relatively small,
they are difficult to use to train neural networks. Therefore,
in the following experiments, networks are trained on M-
SRA10K dataset and then applied to the other 4 datasets.
During training, images in MSRA10K were first divided into 3
subsets: the training set (8,000 images), evaluation set (1,000
images) and test set (1,000 images), and then, the networks
were trained on the training set while being evaluated on
the evaluation set. In the test stage, trained networks were
applied to the test set of MSRA10K and the other 4 datasets.
In these experiments, our method competed with 7 state-of-

TABLE I
NETWORK CONFIGURATION OF THE PROPOSED METHOD.

FEN FSEN SEN
conv2d

(3)
3,64 conv2d

(48,16,32)
9,64 cfc2d

(3)
64,8,80 conv2d

(3)
128,64

ReLU ReLU ReLU ReLU
conv2d

(3)
64,64 conv2d

(3)
64,64 cfc2d

(3)
80,8,80 conv2d

(3)
64,64

ReLU ReLU ReLU
conv2d

(3)
64,64 cfc2d

(3)
80,8,80 conv2d

(1)
64,64

ReLU ReLU ReLU
conv2d

(3)
64,32 conv2d

(3)
80,128 conv2d

(1)
64,64

ReLU ReLU ReLU
SDN conv2d

(3)
32,32 conv2d

(3)
128,256 conv2d

(1)
64,64

conv2d
(5)
64,64 ReLU ReLU ReLU

ReLU conv2d
(3)
32,32 conv2d

(3)
256,512 conv2d

(1)
64,1

conv2d
(3)
64,64 ReLU ReLU Sigmoid

ReLU conv2d
(3)
32,16 conv2d

(3)
512,256

conv2d
(3)
64,8 ReLU ReLU

conv2d
(1)
16,9 conv2d

(3)
256,128

Softmax2d ReLU

the-art DSOD methods, including SuperCNN [17], LEGS [11],
DCL [12], DISC [18], Dhsnet [13], RFCN [29] and DSS [16].
The results are analyzed in detail in Sec. V-B.

A. Network Configuration

For a better understanding of the following experiments, the
experiment network configuration of FSCFC is given here.

In Tab. I, a ReLU is a rectified linear unit, a Softmax2d is
a spatial Softmax layer, and Sigmoid represents the sigmoid
function. conv2d(k,s,p)i,o is a 2D convolution layer with i input



channels, o output channels, k × k kernel, a stride of s and
p padding. When not given, s is the default and set as 1

and p is the default set as (k − 1)/2. cfc2d
(k)
a,b,o is similar

to conv2d
(k,s,p)
i,o with a and b representing the number of

channels in the input feature map A and B, respectively.
In addition, before being passed to the network, images are

all resized to 256 × 256 pixels. The number of superpixels,
i.e., K is set to 256.

B. Salient Object Detection Performance

As shown in Fig. 4, FSCFC significantly outperformed
all the other competing methods on all the datasets except
PASCAL1500, in which the performances of FSCFC and DSS
were very close. In addition to FSCFC, DSS achieved the
second-best performance on most of the datasets, especially
on ECSSD and THUR15K. The reason could be that the back-
bone of DSS is a pretrained VGG16 network, which contains
extra information from ImageNet. Although SuperCNN, DISC
and FSCFC all benefit from superpixels, their performances
showed that FSE, which is neural network-based, is more
effective than nondifferentiable methods in the DSOD task.

Fig. 4(f) also shows the mean absolute errors (MAE) of
the competing methods. When the PR curves are difficult to
analyze, MAE can provide an easier method for comparing
the performances of different methods. However, although
theoretically, a lower MAE means that the output and ground
truth are closer and thus means better performance, there
are usually considerably more background pixels than salient
pixels in the benchmark datasets; thus, models assigning more
pixels to the background usually have a better MAE, while
their PR curves are not as good.

C. Effect of Fuzzy Superpixel Extraction

Fuzzy superpixel extraction (FSE) is one of the most
important parts of FSCFC; thus, a series of experiments are
conducted to evaluate its effect compared with the SLIC
[19] algorithm, which is one of the state-of-the-art superpixel
extraction methods.

In the experiments in this section, FSE in our working
network is replaced with SLIC to form a competitive network.
For this network to work, an additional preprocessing stage
was added between the SLIC and the neural network. This
preprocess converts the superpixels given by SLIC to a matrix
S# similar to S so that it can be used as the input of the SDN,
SPL and SRL. In addition, in the backward process, gradients
with respect to S# were discarded.

Fig. 5(a) presents the results of the above experiments.
On all the datasets, FSE outperformed SLIC significantly,
especially on MSRA10K. This is probably because, unlike
SLIC, FSE can participate in the training process, which makes
it easier for FSE to be optimized according to the actual data.

D. Effect of Controlled Filter Convolution

In FSCFC, controlled filter convolution (CFC) is used as
a substitute for the traditional convolution to improve the
performance of the entire network. However, without CFC it

is still possible to build working networks for our purpose.
Therefore, the necessity of using CFC needs to be evaluated,
and thus, we conducted some experiments in this section.

To build the competitive network, the CFC layers in the
SEN were all replaced with traditional convolution layers,
specifically spatial convolution (SC) layers. Because the super-
pixelwise feature map and superpixel shape description feature
map, which were originally processed by the CFC layers, are
both supposed to be the input of SEN, they were concatenated
by channels before passing to the SEN. The rest of the network
was the same as that using the CFC layers.

To reduce the influence of the number of network parame-
ters, the newly added convolution layers were carefully config-
ured to have approximately the same number of parameters as
the original CFC layers. As shown in Fig. 5(b), even with the
same number of parameters, the network consisting of CFC
layers outperformed its counterpart, which has only spatial
convolution layers.

The different behaviors can be explained by the different
kernel operations on which CFC and traditional convolution
are based. In traditional convolution, the output is merely a
weighted sum of all the input feature maps, but in CFC, the
two input feature maps have a more complex relationship with
each other, which increases the expression ability.

E. Effect of Spatial Regularization

Some of the SOD methods, including DISC, use spatial reg-
ularization (SR) to boost their performance, i.e., the methods
use prior knowledge (or assumption) of the spatial distribution
of salient pixels to guide the detection process. Some methods
directly add SR rules, such as favoring pixels near the center,
to their models, and some recent DSOD methods such as
DISC add an additional input channel besides the original
color channels to provide their networks with SR information.

However, SR rules are mostly empirical and highly depen-
dent on the properties of the training dataset, which can lead
to bad generalization performance. In the experiments in Sec.
V-B, two different training strategies (with and without SR)
were applied to verify the effectiveness of SR in DSOD.

As shown in Fig. 5(c), two training strategies showed
no significant difference on MSRA10K, and on the other 4
datasets SR seemingly impaired the generalization ability of
the models and thus caused the performance to drop slightly.
This cannot disprove the effectiveness of SR in nondeep SOD
methods, but it proved that the necessity of using SR rules in
DSOD methods is doubtful.

VI. CONCLUSION

This paper proposed a novel deep salient object detection
method using fuzzy superpixel extraction (FSE) and controlled
filter convolution (CFC), which are specially designed for us-
ing in DSOD methods. By making the membership functions
of superpixels continuous, FSE can be easily implemented
with neural network modules and embedded into any network
with the help of SPL and SRL. CFC modified dynamic filter
convolution into a task-specific linear version that accepts two
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Fig. 5. Results of analysis experiments. (a) compares FSE and SLIC as the superpixel extraction method for DSOD, (b) compares the networks with and
without CFC layers, and (c) shows the performance of FSCFC with and without SR. Each figure of (a)-(c) contains the results on all 5 datasets.

input feature maps and is capable of balancing their influences
without any hand-picked coefficients involved.

To evaluate the proposed method, i.e., FSCFC, a series of
experiments were conducted to compare the performance of F-
SCFC with 7 state-of-the-art DSOD methods on 5 widely used
benchmark datasets. These experiments proved that FSCFC
significantly outperforms the competing DSOD methods on all
the datasets. Meanwhile, the experimental results on ECSSD,
SOD, PASCAL1500 and THUR15K also showed that FSCFC
has higher generalization ability than the competing methods.
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