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Abstract—Region-based Image Retrieval (RBIR), which bases
itself on image segmentation rather than global features or
key-point-based local features, is a branch of Content-based
Image Retrieval. This paper proposes a novel RBIR-oriented
image segmentation algorithm named Edge Integrated Minimum
Spanning Tree (EI-MST). The difference between EI-MST and
the traditional MST-based methods is that EI-MST generates
MSTs over edge-maps rather than the original images, which
achieved high retrieval performance cooperating with state-of-
the-art matching strategies. In addition, by limiting the nodes in
every MST with adaptive scale selection, EI-MST is efficient espe-
cially when processing high resolution images. The experiments
on four popular public datasets proved that, EI-MST is capable
of achieving higher retrieval accuracy over four widely used
segmentation methods while only consuming moderate amount
of time in both online and offline parts of RBIR systems.

I. INTRODUCTION

As a branch of Content-based Image Retrieval (CBIR),
Region-based Image Retrieval (RBIR) aims to solve the same
problem, which is filling the gap between visual features and
semantic meanings of images. Different from global feature
or local feature based CBIR methods, RBIR compares two
images by evaluating the similarity between homogenous (or
semantically meaningful) regions. Intuitively, RBIR works in
a scale half-way between global features like Color and Edge
Directivity Descriptor (CEDD) [1] and key-point-based local
features such as SIFT [2] and SURF [3].

There are mainly two types of RBIR systems: a) a few of
them change the retrieval target from images to regions, i.e.
instead of matching the query image to database images, these
systems choose to match the query region(s) to regions, so
these methods mostly need users to select the ROIs (region of
interest) from query images; b) other systems were designed
for the standard content-based image retrieval task, which
makes them valid substitutes for any existing CBIR system.
This paper is focused on the second type.

A RBIR system normally works through the following steps:
1) segment the images into regions with a certain segmentation
algorithm; 2) extract visual features from each region; 3)
convert the similarities between regions into the similarities
between images through certain matching strategy. Hence,

there are three crucial parts consisting in a RBIR system,
which are the segmentation algorithm, visual feature and
matching strategy.

Segmentation algorithms, as an important part of a RBIR
system, should have great influence on the efficiency and
retrieval performance of the entire system. However, few
papers paid much attention to it, while there were many papers
proposing different matching strategies [4], [5] in the last
few years. Most of the papers about RBIR chose existing
segmentation algorithms as part of their systems without
giving a reason.

The image segmentation method proposed here is named
Edge Integrated Minimum Spanning Tree (EI-MST). EI-MST
is a Minimum Spanning Tree (MST) based segmentation
method inspired by Recursive Shortest Spanning Tree (RSST)
[6] and Local Variation segmentation (LV) [7]. However,
different from RSST and LV, EI-MST generates MSTs from
edge maps rather than the original images, and meanwhile
it scores a tree edge by collecting information from multiple
nodes associated to it instead of its two ends. These differ-
ences lead to some special characteristics and help EI-MST
achieving high stability in the experiments. Fig.1 shows a brief
illustration of the segmentation process of EI-MST: 1) an edge
map is generated from the original image; 2) a MST is built
on the edge map; 3) the MST is split into subtrees, each of
which represents an individual region.

In addition, EI-MST uses relatively large scale grid to divide
the original images into cells, and then convert these cells into
vertices of MSTs. In this way, the number of vertices in a MST
is limited, and so is the time cost of segmentation process.

In order to evaluate the performance of EI-MST, it was
compared to a few popular color image segmentation algo-
rithms in a series of experiments: for evaluating retrieval per-
formance, different combinations of segmentation algorithm,
visual feature and matching strategy are tested on four widely
used public datasets; for evaluating efficiency, time costs of
competing segmentation algorithms are compared. Results of
these experiments will be presented and discussed in Sec.IV.

The last few years saw many attentions been given to
Semantic Segmentation [8], [9]. It works a lot like RBIR
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Fig. 1. Image segmentation process of EI-MST.

systems of the first type, because they both try to select
a group of regions from images according to some given
conditions, which for semantic segmentation could be models
of a specific object category. However, for a practical RBIR
system, the classification process of semantic segmentation
could prove too costly and not necessary for standard image
retrieval task, and it is nearly impossible to train enough
models for a vast amount of arbitrary images. In contrast,
traditional unsupervised segmentation methods [7], [10], [11],
[12], though did not see much development recently, are much
lighter and more general, which makes them more suitable
for RBIR systems than semantic segmentation algorithms.
Therefore, the competing methods we chose are widely used
unsupervised segmentation algorithms. They may be a little
old but their effectiveness has been proven by existing systems.

The main contribution of this paper lies in two parts:
• a novel way of generating Minimum Spanning Trees from

images which makes use of edge detection results;
• an efficient MST-based segmentation algorithm specially

designed for region-based image retrieval, named Edge
Integration Minimum Spanning Tree (EI-MST).

The rest of this paper is structured as follows. Before
proposing EI-MST, the generation process and characteristics
of edge-MST are introduced in Sec.II. Then, Sec.III gives
a fully detailed description of EI-MST. In order to evaluate
the performance of EI-MST, several experiments have been
conducted, and their results will be presented and discussed
in Sec.IV. Finally, Sec.V concludes our work.

II. MST BASED ON EDGE MAP

To avoid ambiguity, from now on, the phrase “edge” stands
for curves that separate two regions, and phrases “graph edge”
and “tree edge” mean edges in the graph theory definition.

As the name suggests, EI-MST is a MST-based segmenta-
tion method. Classic MST-based image segmentation methods
normally work in the following steps:

1) the image is divided into fix-sized cells (patches) with a
grid, and certain features are extracted from each cell;

2) an adjacency graph G = (V,E) is constructed by
regarding cells as vertices and connecting each cell to
its 4 or 8 neighbors with undirected edges, and then a
Minimum Spanning Tree T = (V,Et) is generated from
G, i.e. Et ⊂ E;

3) tree edges of T are scored, and then edges with high
scores are cut to split the original tree into a forest of
subtrees, in which each subtree represents a homoge-
neous region of the target image.

According to the above steps, the construction of MSTs
forms the basis, so the characteristics of MSTs are crucial to
the segmentation processes. Step 3 shows that all MST-based
methods are based on the assumption that each homogeneous
region in the image can be represented by a subtree of the
MST, which may be called Correspondence Assumption.
When the correspondence assumption does not hold, no MST-
based method can have good segmentation performance.

The rest of this section will present edge-MST. Compared to
traditional MSTs, edge-MSTs are built over edge maps rather
than original images, and Sec.II-B will show that they are
more likely to satisfy the correspondence assumption.

A. Edge map generation

For simplicity and efficiency, image gradient is
used in EI-MST for edge detection, i.e. |v(x, y)| =√
∥I(x+ 1, y)− I(x, y)∥2 + ∥I(x, y + 1)− I(x, y)∥2,

where v(x, y) ∈ V represents the cell (x, y) with |v(x, y)|
being its edge strength, and I(x, y) is the average color of
pixels in cell (x, y). The reason of making this choice lies
in the fact that this paper is supposed to be focused on two
things: the generation of MST and segmentation process
based on MST. Moreover, a robust algorithm should be able
to tolerate minor instability of the edge detection.

The only problem left is how to determine the scale of edge
maps. The word ”scale” here is referred to as the size of grid
cells. More specifically, assuming that each cell in a patch
consists of s× s pixels, s is the parameter representing scale.

Obviously, parameter s determines how fine or coarse will
the edge detection and the segmentation work, so it may have
strong influence on the performance and efficiency. Simply
speaking, smaller s could lead to finer (not always better)
segmentation and larger time cost, while larger s will probably
make the algorithm run faster but the segmentation result may
be a little sketch-like.

Normally, we can choose a fixed s for all the images, and
it works fine if the resolutions of images are mostly similar,
e.g. images from the same public dataset. For images varying
much in size, however, it might be better to choose s for
each individual image according to its size. The experiments
presented in Sec.IV are conducted on four different datasets
with images from around 100,000 pixels to 6,000,000 pixels,
so for these experiments we propose Adaptive Scale Selection:

s =
[√

H ·W/F + 1
]
, (1)
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Fig. 2. Difference between a traditional MST and an edge-MST.

where H and W are the height and width of the image,
[c] is the closest integer of c, and F is an integer constant
representing how many cells should be in an edge map.

Due to the purpose of RBIR, the segmentation method
should be fast enough so that it doesn’t slow down the whole
system, and textures are probably better to be ignored during
segmentation. Therefore, large s or small F might be more
suitable for RBIR-oriented applications.

B. Construction and characteristics of edge-MSTs

Traditional MST-base methods [6], [7] construct adjacency
graphs and MSTs directly on the original images, i.e. the
weight of {a, b} ∈ E is ∥I(a)− I(b)∥. In this way, two cells
connected by a tree edge are supposed to be similar.

EI-MST generates adjacency graphs and their associated
MSTs on edge maps, i.e. the weights of graph edges are
assigned according to edge strengths instead of original feature
vectors. More specifically,

ω({a, b}) = |a|2 + |b|2, {a, b} ∈ E, a ∈ V, b ∈ V, (2)

where ω({a, b}) is the weight of graph edge {a, b}. Obviously,
instead of trying to connect similar cells, the tree edges of an
edge-MST tend to avoid cells with high edge strengths, which
makes these cells have very low degrees (mostly 1).

Fig.2 shows the comparison between a MST and an edge-
MST based on the same zoom area of Fig.1(a). Intuitively,
MST vertices with high edge strengths can have degrees of any
number, and branches could go along edges without difficulty.
In contrast, almost all the edge-MST vertices with high edge
strengths are leaves, and the branches tend to cross the edges.
Thus, the correspondence assumption is more likely to hold
for edge-MSTs than traditional MSTs.

III. EDGE INTEGRATED MINIMUM SPANNING TREE

As shown in Fig.1, the process of EI-MST is almost the
same as those of most MST-based methods with only one
difference, i.e. the generation of edge maps. Therefore, after
edge-MSTs are obtained, the work left for EI-MST is to split
the original tree into a forest of its subtrees. EI-MST has two
major differences from the other MST-based methods:

• each tree edge is scored by collecting edge strength
information from the two subtrees connected by it, instead
of its two ends (Sec.III-A);

a b
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Fig. 3. Intersection set of a tree edge {a, b}.

• after cutting a tree edge, scores of other edges are updated
through simple set operations instead of rerunning costly
scoring processes (Sec.III-B).

A. Scores of tree edges

Let Λ(e) denote the score of a tree edge e ∈ Et. Due to the
purpose of segmentation, Λ(e) should reflect the likelihood
that, after cutting e the original tree will split into two
subtrees each representing a homogeneous region. However,
this assumption is hardly true during the early iteration cycles,
e.g. after cutting the first edge both of the two temporary
regions are most likely unions of many smaller regions rather
than two large homogeneous regions.

Most of the MST-based methods choose to let Λ(e) ≡ ω(e).
In this way, tree edges crossing region edges are more likely to
be cut first, and after a few cuts the subtrees should correspond
to homogeneous regions. This idea is inspired, but when
applied to large scale patches it is usually unstable and tends
to get numerous small regions around rough edges. Therefore,
we extended this idea into a more stable form in EI-MST.

For each tree edge {a, b} ∈ Et, two sets of nodes are gen-
erated, which are denoted by Ω({a, b} , a) and Ω ({a, b} , b)
respectively, where Ω({a, b} , v) consists of all the nodes that
are either within or in possession of at least one neighbor in
the subtree attached to v ∈ {a, b}, as shown in Fig.3. After
the Ω sets are generated, we can easily get the intersection
set I({a, b}) through the following equation:

I({a, b}) = Ω ({a, b} , a) ∩ Ω ({a, b} , b) . (3)

According to the definition of Ω sets, I({a, b}) should con-
sist of all nodes around the edge separating the two subtrees
connected by {a, b}. Apparently, by taking into consideration
all elements in I({a, b}) instead of merely {a, b}, random
errors are less likely to affect the segmentation results.

The intersection set is supposed to include all nodes around
the edge, so it seems logical to score a tree edge according
to its intersection set. In summary, the scoring equation of
EI-MST is as follows:

Λ({a, b}) =

∑
u∈I({a,b})

|u|

|I({a, b})|q
, {a, b} ∈ Et, q ∈ R+. (4)
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Fig. 4. Intersection set of {c, d} after cutting {a, b}.

According to (4), the scoring strategy of EI-MST is based
on the integration of edge strengths of cells in the edge map.
|I({a, b})| denotes the number of elements within I({a, b}). q
is a constant which needs tuning. Generally speaking, a model
with small q tends to segment images into a few big regions,
while one with large q usually yields numerous small regions.

B. Splitting the tree

After the edges are scored, it should be easy to cut the edge
with the highest score and split the whole tree into two subtrees
each representing a temporary region. However, after the first
cut a problem arises: all the edge scores were calculated on
the original tree and cannot be used directly in the following
iteration cycles, because cutting them will be splitting the
subtrees instead of the original one. Therefore, their scores
should be updated before the next iteration cycle.

If e0 ∈ Et is cut during the ith iteration cycle and e0 belongs
to subtree T ′ = (V ′, E′), then for ∀e ∈ E′ and ∀v ∈ e, let

Ω(i+1) (e, v) = Ω(i) (e, v) \ I(i)(e0). (5)

By doing so, I(i)(e) becomes I(i+1)(e) = I(i)(e) \ I(i)(e0),
and then Λ(i+1)(e) can be recalculated according to I(i+1)(e).
Fig.4 illustrates the effect of updating Ω sets of tree edge {c, d}
after cutting {a, b} in the previous iteration.

As shown in Fig.4, I(i)({c, d}) contains many nodes
of I(i)({a, b}) since they are based on the same sub-
tree. However, after cutting {a, b}, the subtree attached
to d shrank, so most of the nodes in I(i)({a, b}) should
not be in I(i+1)({c, d}) any more. Of course, by setting
I(i+1)({c, d}) = I(i)({c, d})\I(i)({a, b}), we may lose a few
nodes such as a, because all nodes in I(i)({a, b}) are excluded
arbitrarily. However, this loss is tolerable when compared to
the cost of recalculating all the Ω sets.

In summary, the process of segmentation is as follows: the
tree edge with the highest score is cut at the beginning of each
iteration cycle, and then scores of the tree edges belonging to
the same subtree as the cut one are updated before the next
iteration cycle. This process is done over and over again until
the highest score among the rest tree edges is under a threshold
t, and then the survived tree edges form a forest with each

tree in it representing a homogeneous region. An example of
segmentation result of EI-MST is given by Fig.1(d).

IV. EVALUATION

To evaluate the efficiency and retrieval accuracy of EI-
MST, we compared EI-MST to four widely used color image
segmentation algorithms in a series of experiments:

1) different combinations of segmentation algorithm, visu-
al feature and matching strategy are tested on public
datasets, and the retrieval performances are compared;

2) time costs of the competing segmentation algorithms are
compared in order to evaluate their efficiency.

In type 1 experiments, segmentation algorithms are first
applied to convert images into sets of regions with each region
described by a specific visual feature. Then, segmented images
are matched via Integrated Region Matching [4] (IRM) or Bag-
of-Regions [5] (BOR). More specifically,

• for IRM, each region is given a weight equal to the
proportion of its area to the whole image, and similar-
ities between region sets (images) are calculated directly
through the matching strategy of IRM;

• for BOR, a codebook will first be generated for each
dataset by using K-means clustering. Then, region sets
are converted into BOR vectors by weighting each region
with a saliency measure proposed in [13], and the vectors
are compared with Euclidean Distance.

The retrieval performances are evaluated with Mean Average
Precision (MAP), and the results will be discussed in Sec.IV-A
and Sec.IV-B.

In type 2 experiments, only the time costs of segmentation
processes are compared, i.e. the time consumed by image
loading, feature extraction and matching is not contained in
the final results. In practical RBIR systems, the efficiency of
segmentation methods will mostly affects the offline time cost,
while the online efficiency are usually determined by Average
Region Count (ARC), which is the average number of regions
generated for one image. Therefore, as well as MAP, ARC has
also been recorded in type 1 experiments, and the results will
be discussed in Sec.IV-C

Specifically, the setup of the experiments is as follows:

• Datasets: datasets used in the following experiments are
INRIA Holiday [14] (1491 pictures), ZuBuD [15] (1005
pictures), UCID [16] (1338 pictures with 200 queries)
and ukbench [17] (10200 pictures);

• Segmentation Algorithms: competing algorithms other
than EI-MST are Local Variation segmentation (LV) [7],
JSEG [10], Mean Shift segmentation (MS) [11] and Color
Watershed Adjacency Graph Merge (CWAGM) [12];1

• Visual Features: CEDD [1], AlexNet [18] and R-CNN
[19] are used to describe images and regions.2

1MS and CWAGM are implemented by LTI-LIB project.
2Models of AlexNet and R-CNN are trained by Caffe project [20].



TABLE I
RETRIEVAL PERFORMANCE OF IRM+CEDD IN MAP (%). (F = 8000, q = 0.9, t = 0.2)

RBIR CBIR
LV JSEG MS CWAGM EI-MST CEDD

MAP ARC MAP ARC MAP ARC MAP ARC MAP ARC MAP
ZuBuD 85.83 241 62.99 68 81.89 37 88.57 536 87.62 136 79.12
UCID 71.93 136 36.46 72 70.73 36 74.54 390 75.00 170 67.41

ukbench 72.91 149 52.06 54 76.16 34 76.94 372 78.61 65 70.26
Holiday 73.96 255 55.37 186 71.54 36 73.45 4854 74.19 107 69.82

TABLE II
RETRIEVAL PERFORMANCE OF BOR+CEDD IN MAP (%). (F = 8000, q = 1.0, t = 0.05)

Codebook RBIR CBIR
LV JSEG MS CWAGM EI-MST CEDD

ZuBuD 200 78.87 60.95 53.05 84.34 85.83 79.122000 76.36 56.84 53.50 81.90 84.23

UCID 200 60.77 58.26 52.55 69.00 69.01 67.412000 57.78 47.28 50.46 60.17 64.63

ukbench 200 59.86 60.48 47.68 68.50 68.92 70.262000 55.27 56.92 43.50 61.33 63.09

Holiday 200 57.55 55.87 50.36 67.14 66.68 69.822000 56.68 56.01 47.30 63.61 63.45

A. Working with CEDD

CEDD [1] is one the most popular global features for CBIR.
It integrates color features and textural features into fixed-sized
vectors, which makes it highly efficient and capable of reflect
a series of different image characteristics. So far, CEDD has
been used in many CBIR systems.

The retrieval performance of segmentation methods working
with CEDD is evaluated by cooperating with IRM or BOR,
i.e. the results of different segmentation methods cooperating
with IRM are compared to each other (Table I) and the same
goes for BOR (Table II). The columns marked CEDD give
the MAPs of pure CEDD as a baseline, and the same goes for
R-CNN and AlexNet in Table III.

With both IRM and BOR, EI-MST achieved the best per-
formance among all the competing methods, which proved the
effectiveness of EI-MST as a part of RBIR system. However,
BOR only beat pure CEDD on two datasets (ZuBud and
UCID), while on the other two the segmentation process seems
a waste of time since all the results of RBIR systems are even
worse than those of pure CEDD.

Compared to the other 3 methods, EI-MST and CWAGM
performed significantly better. This might be because these
two methods are both edge sensitive, which means that the
segmentation results of EI-MST and CWAGM are more de-
pendent on the clarity of edges than the uniformity of regions.

B. Working with CNN

Along with the flourish of Deep Learning, the last few
years saw Convolutional Neural Network (CNN) [18], [19]
draw much attention in the area of image analysis, especially
retrieval and recognition. By training models with vast amount
of data, CNN-based methods achieved amazingly high per-
formances on a series of contests and benchmarks. However,
compared to traditional manually designed features such as
CEDD, CNN requires an additional complicated and time

consuming training process, which makes it a little difficult to
use in many practical systems. Therefore, a few researchers
chose to use pre-trained CNN models in their system as
substitutes of traditional visual features, and their results are
encouraging. We adopted this idea and designed the following
experiments to evaluate EI-MST from a different angle.

Table III shows the retrieval performances of competing seg-
mentation methods cooperating with IRM and R-CNN (pre-
trained model). We also conducted experiments with the com-
bination of IRM+AlexNet, but the results of IRM+AlexNet
are in general slightly worse than those of IRM+R-CNN.
Therefore, we only discuss the results of IRM+R-CNN.

EI-MST outperformed all the competing methods here, and
EI-MST+IRM+R-CNN shows improvement over pure R-CNN
on all four datasets. However, when compared to AlexNet,
EI-MST+IRM+R-CNN only won on two datasets (ZuBuD
and Holiday), while on the other two the results of EI-
MST+IRM+R-CNN are slightly worse than those of AlexNet.

On the whole, the superiority of RBIR is limited when
compared to CNN models (R-CNN and AlexNet). The reason
could be that there is much overlap between the information
provided by segmentation and that provided by CNN models,
so RBIR systems cannot get enough additional information to
improve the retrieval performance.

C. Efficiency Issue

As shown in Table IV, EI-MST is significantly faster than
the other algorithms, especially on INRIA Holiday dataset.
This could be because images in INRIA Holiday are extremely
big (around 3000 × 2000 pixels) compared to the other 3
datasets, and adaptive scale selection prevented edge-MSTs
from growing overly large while processing high resolution
pictures. Meanwhile, EI-MST worked very well with adaptive
scale selection and achieved high retrieval performance.



TABLE III
RETRIEVAL PERFORMANCE OF IRM+R-CNN IN MAP (%). (F = 4800, q = 0.7, t = 0.5)

RBIR CBIR
LV JSEG MS CWAGM EI-MST R-CNN AlexNet

MAP ARC MAP ARC MAP ARC MAP ARC MAP ARC MAP MAP
ZuBuD 74.52 210 46.72 29 82.05 6 79.43 249 86.44 89 83.01 83.38
UCID 80.69 120 31.92 51 81.05 7 80.51 204 81.18 50 80.15 82.88

ukbench 82.67 152 6.01 19 85.50 7 84.42 216 84.00 25 83.53 84.95
Holiday 70.45 241 48.98 125 77.61 7 58.75 1697 79.63 58 76.60 77.43

TABLE IV
TOTAL TIME COSTS OF DIFFERENT SEGMENTATION ALGORITHMS IN

SECONDS.

LV JSEG MS CWAGM EI-MST
ZuBuD 721.18 1.23×105 201.46 209.25 118.10
UCID 94.26 8427.52 195.77 510.08 216.62

ukbench 1576.92 1.08×105 2024.81 2318.87 1047.54
Holiday 5682.20 4.50×106 4979.94 3657.06 186.52

The online efficiency of IRM mainly depends on ARC, i.e.
higher ARC almost always means larger time cost. Accord-
ing to Table I and Table III, there seems to be a positive
correlation between ARC and MAP for IRM+CEDD systems
and a negative correlation for IRM+CNN systems, though
the relationships are vague and weak. In both experiments,
EI-MST achieved the highest accuracy among all competing
methods with moderate ARCs, which proved its capability
of optimizing the tradeoff between accuracy and efficiency.
However, IRM is still a heavy-loaded matching strategy, so
it may need to be combined with speed-up methods such as
hashing [21], [22], [23] in order to form practical systems.

V. CONCLUSION

This paper proposed a novel image segmentation algorithm
named EI-MST and evaluated its efficiency and retrieval per-
formance by comparing it to a few widely used segmentation
algorithms on four popular public datasets.

The experiments proved that EI-MST achieved the highest
retrieval accuracy among all the competing methods. Mean-
while, EI-MST is highly efficient both online and offline,
especially when processing high resolution images such as
INRIA Holiday pictures. Therefore, EI-MST is suitable for
processing pictures taken with high resolution cameras which
are common in user generated media.
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